Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 345: 123497, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331242

RESUMEN

Mining is of great relevance to the global economy, but its activities are challenging due to socio-environmental impacts. In January 2019, an iron ore tailings dam collapsed in Brumadinho (Minas Gerais, Brazil) releasing 12 × 106 m3 of tailings, causing human losses and devastation around 3.13 × 106 m2 of a watershed. In this context, the present study aimed to investigate the potential toxic effects of tailings from the collapsed dam using earthworms Eisenia andrei as a model organism for terrestrial environments. An extensive set of tests was performed, including behavioral (avoidance), acute (mortality and biomass) and chronic tests, such as biomass, reproduction and cytotoxicity (viability and cell density and change in coelomocyte pattern). The physical-chemical characterization revealed a higher density of the tailings in relation to the control soil, which can result in physical changes, such as soil compaction and surface sealing. Aluminum, Ca, Fe, Hg, Mg, Mn, K, Na and P registered higher concentrations in the tailings compared to the control soil, while Total Nitrogen, Total Organic Carbon and Organic Matter were higher in the natural soil. Based on the avoidance test, an EC50 of 27.18 ± 2.83% was estimated. No lethality was observed in the acute exposure, nor variations in biomass in the acute and chronic assays. However, there was a tendency to reduce the number of juveniles in relation to cocoons in the proportions of 3125; 12.5 and 25%. Significant changes in viability, cell density and pattern of amebocytes and eleocytes were observed up to the 35th day of exposure. A multi-biomarker approach (Integrated Biological Response version 2) indicated concentration-dependent effects and attenuation of cellular changes over time. These are the first results of chronic effects on earthworms exposed to tailings from the B1 dam. Despite being conclusive, we highlight the possible heterogeneity of the tailings and the necessary care in extrapolating the results.


Asunto(s)
Desastres , Oligoquetos , Contaminantes del Suelo , Animales , Humanos , Suelo/química , Minería , Biomarcadores/metabolismo , Brasil , Contaminantes del Suelo/análisis
2.
Environ Sci Pollut Res Int ; 31(7): 10737-10749, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38206461

RESUMEN

Water body contamination by leachate originated from dumpsites is a concern for municipal solid waste (MSW) management. In this context, this study aimed to evaluate antioxidant system alterations and oxidative and genotoxic effects in Danio rerio (zebrafish) exposed to leachate from a closed dumpsite. Groups comprising 50 fish were exposed (96 h) to different leachate concentrations (5, 15, 30, and 50%) to evaluate effects on liver and brain superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities and reduced glutathione (GSH) and metallothionein (MT) concentrations, as well as malondialdehyde (MDA) and protein carbonylation (PTC) levels. Blood genotoxicity was evaluated by the comet assay. The investigated dumpsite leachate pond presented high chloride concentrations (Cl-; 2288.4 ± 69.5 mg L-1) and high electrical conductivity (EC; 8434.0 mS cm-1), indicating the presence of leachate. Concerning Danio rerio exposure, higher SOD (37%), CAT (67%), and GST (39%) activities and higher GSH (57%) concentrations were observed in liver following exposure to 50% leachate, while decreased brain GST (42%) activities and GSH (90%) levels were observed at the same leachate concentration. A significant increase in the olive tail moment (OTM; 280%) indicative of genotoxicity in blood was observed. A principal component analysis indicated that increased enzymatic activities and high levels of both GSH and MT were not sufficient to prevent the accumulation of reactive oxygen species, resulting in PTC and genotoxicity. Therefore, leachate exposure causes sublethal Danio rerio effects, altering the antioxidant system, increasing ROS production, and leading to PTC and genotoxicity. The findings demonstrate the need to further develop sublethal level assessments in zebrafish using leachate from different sources to subsidize risk assessments regarding MSW management.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Catalasa/metabolismo , Daño del ADN , Superóxido Dismutasa/metabolismo , Perciformes/metabolismo , Cloruros
3.
Sci Total Environ ; 915: 170083, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38224881

RESUMEN

Leachate is a highly complex waste with high toxicological potential that poses a significant threat to the terrestrial environment. Determining leachate physicochemical parameters and identifying xenobiotics alone is, however, not enough to determine the real environmental impacts. In this context, the use of terrestrial model organisms has been highlighted as a tool in ecotoxicological leachate assessments and as a guiding principle in risk assessments. In this context, this review aimed to present the most current state of knowledge concerning leachate toxicity and the bioassays employed in this evaluation concerning terrestrial plants and animals. To this end, a literature search on leachate effects on terrestrial organisms was carried out using ten search terms, in 32 different combinations, at the Web of Science and Scopus databases. A total of 74 eligible articles were selected. The retrieved studies analyzed 42 different plant and animal species and employed nine endpoints, namely phytotoxicity, genotoxicity, bioaccumulation, antioxidant system, cytotoxicity, reproduction, physiological changes, behavior and lethality. A frequent association of toxic leachate effects with metals was observed, mainly Pb, Cd, Cr, Mg, Zn and Cr, which can cause antioxidant system alterations and cyto- and genotoxicity. These elements have also been associated to reproductive effects in earthworms and mice. Specifically concerning plants, most of the retrieved studies employed Allium cepa in toxicity assays, reporting phytotoxic effects frequently associated to metals and soil parameter changes. Animal studies, on the other hand, mostly employed mice and evaluated genotoxicity and antioxidant system effects. Even with the description of toxic leachate effects in both plants and animals, a lack of knowledge is still noted concerning reproductive, physiological, cytotoxic, and behavioral effects in terrestrial species. We, thus, suggest that further studies be carried out on other animals, advancing our understanding on potential environmental leachate effects, also allowing for human health risk assessments.


Asunto(s)
Residuos Sólidos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Residuos Sólidos/análisis , Antioxidantes/farmacología , Plantas , Cebollas , Metales , Contaminantes Químicos del Agua/análisis
4.
Mol Cell Endocrinol ; 564: 111883, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36736881

RESUMEN

This study investigated the mechanism of action of clotrimazole (CTZ) and its adverse effects in a model of endometriosis. After autologous endometrial implantation, 18 rats were randomized into two treatment groups: 200 mg/kg CTZ or vehicle for 15 consecutive days. The lesion growth, implant size, glandular atrophy, nitric oxide (NO) serum levels, number of macrophage cells and inducible nitric oxide synthase (iNOS) immunoreactivity were significantly reduced in the CTZ group compared with the control. CTZ (p < 0.05) reduced the lipid peroxidation and protein carbonylation levels in the liver but did not alter the superoxide dismutase (SOD), glutathione (GSH) or glutathione S-transferase (GST) levels in the brain; however, the drug significantly reduced SOD activity and enhanced GST activity in the liver. These results suggest that CTZ interferes with reactive nitrogen species production by downregulating iNOS expression and thus enhances the antioxidant system to promote atrophy and regression of endometriotic lesions, without adverse effects on the brain and/or liver.


Asunto(s)
Clotrimazol , Endometriosis , Femenino , Humanos , Ratas , Animales , Óxido Nítrico Sintasa de Tipo II/metabolismo , Clotrimazol/farmacología , Estrés Oxidativo , Antioxidantes/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Óxido Nítrico/metabolismo , Biomarcadores/metabolismo
5.
Environ Pollut ; 287: 117351, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000669

RESUMEN

It is estimated that approximately 0.4% of the total leachate produced in a landfill is destined for treatment plants, while the rest can reach the soil and groundwater. In this context, this study aimed to perform leachate toxicity evaluations through immune system cytotoxic assessments, genotoxic (comet assay) appraisals and antioxidant system (superoxide dismutase - SOD; catalase - CAT, glutathione-S-transferase - GST; reduced glutathione - GSH and metallothionein - MT) evaluations in Eisenia andrei earthworms exposed to a Brazilian leachate for 77 days. The leachate sample contained high organic matter (COD - 10,630 mg L-1) and ammoniacal nitrogen (2398 mg L-1), as well as several metals, including Ca, Cr, Fe, Mg, Ni and Zn. Leachate exposure resulted in SOD activity alterations and increased CAT activity and MT levels. Decreased GST activity and GSH levels were also observed. Antioxidant system alterations due to leachate exposure led to increased malondialdehyde levels as a result of lipid peroxidation after the 77 day-exposure. An inflammatory process was also observed in exposed earthworms, evidenced by increased amoebocyte density, and DNA damage was also noted. This study demonstrates for the first time that sublethal effect assessments in leachate-exposed earthworms comprise an important tool for solid waste management.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Animales , Antioxidantes , Catalasa/metabolismo , Daño del ADN , Malondialdehído , Oligoquetos/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
6.
J Environ Manage ; 285: 112029, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578208

RESUMEN

Leachate is difficult to biodegrade, and presents variable physical, chemical and biological characteristics, as well as high toxicological potential for soil, groundwater and water bodies. In this context, untreated leachate toxicity was evaluated through acute and chronic exposures in Eisenia andrei earthworms. Physico-chemical leachate characterizations indicate a complex composition, with high organic matter (COD - 10,634 mg L-1) and ammoniacal nitrogen (2388 mg L-1) concentrations. Metals with carcinogenic potential, such as Cr, As and Pb, were present at 0.60, 0.14 and 0.01 µg L-1, respectively and endocrine disrupting compounds were detected in estradiol equivalents of 660 ± 50 ng L-1. Acute tests with Eisenia andrei indicated an LC50 (72 h) of 1.3 ± 0.1 µL cm-2 in a filter paper contact test and 53.9 ± 1.3 mL kg-1 in natural soil (14 days). The EC50 in a behavioral test was estimated as 31.6 ± 6.8 mL kg-1, indicating an escape effect for concentrations ranging from 35.0 to 70.0 mL kg-1 and habitat loss from 87.5 mL kg-1 of leachate exposure. Chronic exposure (56 days) led to reproduction effects, resulting in a 4-fold decreased cocoon production and 7-fold juvenile decrease. This effect was mainly attributed to the possible presence of endocrine disrupting compounds. An estimated NOAEL of 1.7 mL L-1 and LOAEL of 3.5 mL L-1 were estimated for earthworms exposed to the assessed effluent. Extremely high-risk quotients (RQ ≥ 1) were estimated based on leachate application in irrigation. Thus, adequate municipal solid waste management is paramount, especially with regard to generated by-products, which can result in high toxicological risks for terrestrial organisms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Animales , Reproducción , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
7.
Ecotoxicol Environ Saf ; 207: 111305, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32942101

RESUMEN

Poultry litter is one of the main sources of fluoroquinolones (FQs) in agricultural soils. In this study, our main goal was to investigate FQ-contaminated poultry litter effects on Eisenia andrei earthworms. To achieve this, acute and chronic tests covered several endpoints, such as avoidance, biomass, lethality, reproduction and changes to immune cells. FQs (enrofloxacin and ciprofloxacin) were determined in a poultry litter sample through high performance liquid chromatography with a fluorescence detector. The avoidance test indicates that poultry litter strongly repels earthworms, even at the lowest concentration (50 g kg-1). In the acute test, the lethal concentration of poultry litter to 50% of the earthworms (LC50), was estimated at 28.5 g kg-1 and a significant biomass loss (p < 0.05) occurred at 40 g kg-1. In the chronic test, a significant reproduction effect was observed at 20 g kg-1. Cell typing, density and feasibility indicated significant effects ranging from 5 to 20 g kg-1. A high risk quotient was estimated based on recommended poultry litter applications in field studies. Although FQ contamination in poultry litter and soils has been widely reported in previous studies, this is, to the best of our knowledge, the first toxicological assessment concerning earthworms exposed to FQ-contaminated poultry litter.


Asunto(s)
Fluoroquinolonas/toxicidad , Oligoquetos/efectos de los fármacos , Aves de Corral , Contaminantes del Suelo/toxicidad , Suelo/química , Residuos Sólidos/análisis , Agricultura , Animales , Biomasa , Fluoroquinolonas/análisis , Dosificación Letal Mediana , Oligoquetos/crecimiento & desarrollo , Reproducción/efectos de la radiación , Contaminantes del Suelo/análisis , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
8.
Environ Pollut ; 267: 115570, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916435

RESUMEN

Triclocarban (TCC) is a contaminant of emerging concern widely applied as an antimicrobial in personal care products and introduced into the terrestrial environment through the application of biosolids (i.e., treated sewage sludge) in agriculture. Displaying the potential to bioaccumulate in the food chain and a high half-life in the soil, the presence of this compound in the environment may lead to potential ecological risks. In this context, TCC toxicity assessments in Eisenia andrei earthworms were carried out through acute, avoidance and chronic tests following cytotoxicity, antioxidant system, i.e. acatalase (CAT), glutathione-S-transferase (GST), glutathione (GSH), lipid peroxidation (LPO), and DNA damage (comet assay) evaluations. An LC50 of 3.3 ± 1.6 mg cm-2 in the acute contact test and an EC50 of 1.92 ± 0.31 mg kg-1 in the avoidance test during 72 h and 48 h, respectively, were obtained. The behavioral test indicates earthworm avoidance from 15.0 mg kg-1 of TCC. During chronic soil exposure, a 44% reduction in earthworm cell viability was observed after 14 days of exposure to 10 mg kg-1 TCC, while an increase in the percentage of amoebocyte cells also ocurred. Chronic exposure to TCC led to reduced CAT and GST activities, decreased GSH levels and increased LPO in exposed organisms. DNA damage was observed after 45 days from a 1 mg kg-1 dose of TCC. Therefore, TCC exhibits toxicological potential to Eisenia andrei earthworms, mainly during long-term exposures. This study provides mechanistic earthworm information towards understanding the environmental and human health implications of TCC exposure and draws attention to correct biosolid management.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Carbanilidas , Daño del ADN , Humanos , Estrés Oxidativo , Contaminantes del Suelo/toxicidad
9.
Ecotoxicol Environ Saf ; 183: 109572, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442806

RESUMEN

The neonicotinoid acetamiprid has been suggested as a worldwide substitute for organophosphates, due to its lower toxicity. The present study assessed several acetamiprid effects on Eisenia andrei earthworms in acute contact (ranging from 1.6 × 10-5 to 0.16 µg cm-2 acetamiprid), behavioral (0.1, 0.5, 1 mg kg-1) and chronic (0.001, 0.01, 0.05 and 0.1 mg kg-1 acetamiprid) assays carried out in natural soil. Reproduction, cytotoxicity (coelomocyte density and viability), immune cell typing (eleocytes and amoebocytes) and antioxidant defense system (glutathione (GSH), catalase (CAT) and glutathione S-transferase (GST)) responses were determined. The LC50 in the acute contact test was calculated as 1.86 × 10-2 µg cm-2. Acetamiprid concentrations of 0.5 and 1 mg kg-1 led to earthworm avoidance responses (NR = 61.09 ±â€¯10.01%) and habitat loss (NR = 78.02 ±â€¯12.03%), respectively. Reproduction was also affected, with a decreased number of cocoons and hatchlings per cocoon observed at 0.05 and 0.1 mg kg-1. Amoebocytes were the predominant immune system cells during the 15th and 30th assay days, while eleocytes were the main cells observed at the 45th day. CAT activities on the 30th and 45th day of exposure were increased at the lowest acetamiprid concentrations (0.001 and 0.01 mg kg-1) and decreased with increasing pesticide concentration (0.05 and 0.1 mg kg-1). Maximum GST activities and GSH levels were noted at 0.01 mg kg-1 acetamiprid. However, increasing concentrations led to GST inhibition, while GSH levels were maintained. A long-term acetamiprid exposure affected earthworm reproduction, behavior and immune and antioxidant systems, which could affect the ecological soil balance and, consequently, the entire food chain.


Asunto(s)
Conducta Animal/efectos de los fármacos , Neonicotinoides/toxicidad , Oligoquetos/fisiología , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Animales , Antioxidantes/metabolismo , Oligoquetos/efectos de los fármacos , Oxidación-Reducción , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...